ClearContracts Lightoaper

An Introduction to
Clear Contracts

Templated smart contract library APIs

Join our Discord Twitter LinkedIn

https://discord.gg/upnpBxzx
https://twitter.com/ClearContracts
https://www.linkedin.com/company/clear-contracts

Our Mission

The mission of Clear Contracts is to lower
the barrier to entry to create, manage,
and execute smart contracts. Smart
contracts have the ability to make existing
systems more optimized and equitable.

Access to technology with this potential
should not be limited to a small group of
highly technical individuals. Rather, it
should be accessible to as many people as
possible.

Smart contracts are ready to disrupt
existing systems based of their ability to
utilize blockchain technology to track and
automate transactions and processes in
conjunction with legal documentation.

Clear Contracts is at the forefront of
providing a non technical solution for this
technology to be implemented into the
industries who would benefit from it the
most.

The Opportunity

The opportunity in front of us comes to light because of three facts of the
blockchain industry.

Writing high assurance smart
contracts is difficult, time consuming,
and expensive. It is extremely
inefficient for each individual project
in the Cardano ecosystem to devote
time and money to develop much of '
the same code.

The technical barrier to entry to
create and interact with smart
contracts on the cardano blockchain
e is too high. Blockchain concepts like
‘ Dapps are not inclusive to all if only a
select few individuals possess the

‘ technical ability to create and interact

with them.

y |

Obtaining contract audits is

expensive and labor intensive. Small '”‘
projects with the desire to create

verifiably secure dapps have no I |
affordable way to access audited

_ -
contracts.

The Solution

Clear Contracts provides a non

technical solution so that anyone can

create, manage, and execute high
assurance smart contracts.

We turn
complicated,
audited haskell
code...

into a simple
online form.

1
2
3
4
5
6
7
8
9

10
"
12
13
14
15
16
17

18

{-# LANGUAGE TemplateHaskell #-}
module Week08.Lens where

import Control.Lens

newtype Company = Company {_staff
= Person

{ _name i1 String

, _addrless :: Address
} deriving Show

data Person

newtype Address = Address {_city :
alejandro, lars :: Person
alejandro = Person

{ _name = "Alejandro"

, _address = Address {_city = "Zacateca"}

}
lars = Person

{ _name = "Lars"

_address = Address {_city = "Regensburg"}

iohk :: Company

iohk = Company { _staff = [alejandro, lars] }

pE |

29

3
32

goTo :: String -> Company -> Company
30 goTo there c = c {_staff = map movePerson (_staff c)}

where

movePerson p = p {_address = (_address p) {_city = there}}

: [Person]} deriving Show

We provide a comprehensive solution
that enables our users to interact with
audited smart contract templates out

of the box.

Withdraw (Wallet 1) (Wallet 2) 1 2
SetPrice (Wallet 1) (Wallet 2) 1
BuyTokens (Wallet 2) (Wallet 2) 0
Start (Wallet 2)

Start (Wallet 1)

AddTokens (Wallet 1) (Wallet 2) 6
BuyTokens (Wallet 1) (Wallet 1) 1

Prelude Plutus.Contract.Test.ContractModel Test.QuickCheck Spec.Model > :t nextState
ContractModel state => Action state -> Spec state ()
Prelude Plutus.Contract.Test.ContractModel Test.QuickCheck Spec.Model > :t view

nextState ::

<interactive>:1:1: error: Variable not in scope: view

Prelude Plutus.Contract.Test.ContractModel Test.QuickCheck Spec.Model > import Control.Lens
Prelude Plutus.Contract.Test.ContractModel Test.QuickCheck Control.Lens Spec.Model > :t viev

String} deriving Show
view
11 mtl-2.2.2:Control.Monad.Reader.Class.MonadReader s m =>
Gettingasa->ma

Prelude Plutus.Contract.Test.ContractModel Test.QuickCheck Control.Lens Spec.Model > :t peri

perform
: ContractModel state =>
HandleFun state
-> ModelState state
-> Action state
-> Plutus.Trace.Emulator.EmulatorTrace ()

Prelude Plutus.Contract.Test.ContractModel Test.QuickCheck Control.Lens Spec.Model > :t prof

propRunActions propRunActions_
propRunActionsWithOptions properFraction

property

propRunActionsWithOptions
:: ContractModel state =>
Plutus.Contrlact.Test.checkOptions
-> [ContractInstanceSpec state]

Create Contract

@ conrocteids

Amount itle

Description

propertyForAllShrinkShow
Prelude Plutus.Contract.Test.ContractModel Test.QuickCheck Control.Lens Spec.Model > :t prof

Technical Developments:

Simple Escrow Smart Contract based off
captured user interactions

One of our initial contracts is a simple This contract can be applied across a
escrow smart contract that takes the variety of industries because it provides
user's desired inputs, deploys a contract an easy way for any two parties to engage
to the blockchain, and manages the in a trustworthy and transparent
eventual facilitation of funds to the agreement. In order to drive more

correct party. adoption of this contract is capable of

using any token including stablecoins,
tokens for DAOs, ADA, etc...

Provide contract formation
interface for a user <
302

A 4

Declines

316

Requests Modification

314 Store
contract
summary

304

Contract generated with
“Pending” status
306

A 4

Provide contract formation
interfaces for other users

308

Third user’s
response
312

Second user’s
response

Accepts Genera_te smart contract from Accepts
—> interface inputs —
311 318 313
Deploy the smart contract to Update contract status to
a blockchain > “Active”
320 322

Fig. 1: Simple Escrow Smart Contract deployment logic

Technical Developments:

Simple Escrow Smart Contract based off
captured user interactions Cont.

This flow chart details how the logic of
the escrow contract ensures that funds
are allocated to the correct party to
complete execution of the contract
based off captured user interactions. In
the event of a disagreement between
the parties, an arbitrator is assigned at
the beginning of the process to resolve
disputes.

An “Active” escrow smart

contract in a blockchain

A 4

Second user provides contract
resolution input

406

402
v
First user provides contract
resolution input
404
| |
v
(Resolution Options\
k 408

h 4 A 4

A 4

Both parties indicate that an
associated deal is complete
410 412

Both parties indicate that the
associated deal is incomplete

The parties disagree
414

l

v

A 4 A 4 A 4

Complete

Third user provides
contract resolution input

420

Funds released to the second user
416 418

Funds released to the first user

Update contract status to
“Completed”
422

\ 4
A

Fig. 2: Simple Escrow Smart Contract fund allocation logic

——Incomplete——

Roadmap

Beta product is a simple
smart contract
management platform

and serves as a proof of
concept to templetize
plutus contracts.

Phase 2: API Creation

We will expand smart
contract library to create
contracts that satisfy use

cases in collaboration with

the community.

ac

Phase 1: Launch Beta
product

Our API will serve as the
on ramp for 3rd party
applications to integrate
high assurance smart
contracts.

Phase 3. Expand Smart

Contract Library

Platform Architecture

Our platform and services serve as direct
access points to create, manage, and execute
smart contracts on the Cardano Blockchain. In
order to create a contract, a user must fill out a
form online. The form inputs get collected and
stored by our internal database. When all
parties involved in the agreement accept their
roles in the contract, our platform automatically
populates the corresponding smart contract
template and the smart contract is sent to the
blockchain for execution based on the logic
embedded within the executable code block. In
order to communicate with and submit
transactions on the blockchain our backend
communicates with the Plutus Application
Backend (PAB). By having a backend that

works in tandem with the

API User

PAB we are able to provide a unique solution
that enables on chain actions to be triggered
from our web application and services.

Controls wallet

Clear
Contracts
User

Crypto
Wallet

-

Pays out

A

A\

Deposits funds &
deploys smart contract

Makes API request to
PAB

A

Smart

Contract
\

Ze

P

Fills out form

\

Clear
Contracts
Site

2s

&

A

Displays data

Communicate through
Plutus Application
Backend (PAB)

Backend

> &
/l
Z

Submits data

ClearContracts

L=
‘l,’"

